The following constants are notated according to their Quantum Measurement Unit (QMU) expression, and their values are given in their Meter Kilogram Second (MKS) unit equivalent expression. The units are given in their Quantum Measurement Unit notation and expression.

# Table of Constants and Units

## Constants

#### Neutron Mass

$$m_{a}=3.268\times 10^{15}kg$$  $$m_{e}=9.109\times 10^{-31}kg$$  $$m_{p}=1.673\times 10^{-27}kg$$  $$m_{n}=1.675\times 10^{-27}kg$$

#### NeutronMagnetic Charge

$${e_{a}}^{2}=5.021\times 10^{8}coul^{2}$$  $${e_{emax}}^{2}=1.410\times 10^{-37}coul^{2}$$ $${e_{pmax}}^{2}=2.570\times 10^{-34}coul^{2}$$   $${e_{nmax}}^{2}=2.573\times 10^{-34}coul^{2}$$

#### NeutronFine Structure

$$a= 2.034\times 10^{-48}$$  $$\alpha=7.297\times 10^{-3}$$  $$p=3.974\times 10^{-6}$$ $$n=3.969\times 10^{-6}$$

#### Length Density Constant

$$e^{2}=2.567\times 10^{-38}coul^{2}$$  $$\lambda_{C}=2.426\times 10^{-12}m$$  $$F_{q}=1.236\times 10^{20}Hz$$  $$ldns_{0}=1.347\times 10^{27}\frac{kg}{m}$$

#### Gforce

$$A_{u}=1.419\times 10^{12}\frac{kg\cdot m^{3}}{sec^{2}\cdot coul^{2}}$$  $$k_{C}=8.988\times 10^{9}\frac{kg\cdot m^{3}}{sec^{2}\cdot coul^{2}}$$  $$G=6.673\times 10^{-11}\frac{m^{3}}{kg\cdot sec^{2}}$$  $$Gforce=1.210\times 10^{44}newton$$

#### Permittivity Constant

$$c=2.998\times 10^{8}\frac{m}{sec}$$  $$Cd=2.112\times 10^{-4}\frac{sec\cdot coul^{2}}{kg\cdot m^{2}}$$  $$\mu_{0}=1.257\times 10^{-6}\frac{henry}{m}$$  $$\epsilon_{0}=8.854\times 10^{-12}\frac{farad}{m}$$

## Units

### Supportive Magnetic Field Units

#### Obverse Units

1. Rotating Magnetic Field
2. Aether Unit
3. Electron Flux

Magnetic Field

Magnetic Volume

$${A_u} = \frac{{{m_e} \cdot {\lambda _C}^3 \cdot {F_q}^2}}{{{e_{emax}}^2}}$$
(also rmfd)
$$mfld = \frac{{{m_e} \cdot {\lambda _C}^3 \cdot {F_q}}}{{{e_{emax}}^2}}$$  $$mvlm = \frac{{{m_e} \cdot {\lambda _C}^3}}{{{e_{emax}}^2}}$$

Electric Potential

Magnetic Flux

Inductance

$$potn = \frac{{{m_e} \cdot {\lambda _C}^2 \cdot {F_q}^2}}{{{e_{emax}}^2}}$$  $$mflx = \frac{{{m_e} \cdot {\lambda _C}^2 \cdot {F_q}}}{{{e_{emax}}^2}}$$  $$indc = \frac{{{m_e} \cdot {\lambda _C}^2}}{{{e_{emax}}^2}}$$

1. Electric Field Strength
2. Electromotive Force

1. Magnetic Momentum
2. Magnetic Rigidity

Permeability

$$elfs = \frac{{{m_e} \cdot {\lambda _C} \cdot {F_q}^2}}{{{e_{emax}}^2}}$$  $$magr = \frac{{{m_e} \cdot {\lambda _C} \cdot {F_q}}}{{{e_{emax}}^2}}$$  $$perm = \frac{{{m_e} \cdot {\lambda _C}}}{{{e_{emax}}^2}}$$

1. Diverging Electric Field
2. Surface Tension Charge
3. Diverging Electric Field
4. Magnetic Resonance

Magnetic Flux Density

1. Magnetism
2. Mass to Charge Ratio

$$dvef = \frac{{{m_e} \cdot {F_q}^2}}{{{e_{emax}}^2}}$$
(also stnc or spcd)
$$mfxd = \frac{{{m_e} \cdot {F_q}}}{{{e_{emax}}^2}}$$  $$mchg = \frac{{{m_e}}}{{{e_{emax}}^2}}$$

#### Inverse Units

IMFU1  IMFU2

Permittivity

$$IMFU1 = \frac{{{e_{emax}}^2}}{{{m_e} \cdot {\lambda _C}^3}}$$  $$IMFU2 = \frac{{{e_{emax}}^2}}{{{m_e} \cdot {\lambda _C}^3 \cdot {F_q}}}$$  $$ptty = \frac{{{e_{emax}}^2}}{{{m_e} \cdot {\lambda _C}^3 \cdot {F_q}^2}}$$
Reluctance

Conductance

Capacitance

$$rlct = \frac{{{e_{emax}}^2}}{{{m_e} \cdot {\lambda _C}^2}}$$

$$cond = \frac{{{e_{emax}}^2}}{{{m_e} \cdot {\lambda _C}^2 \cdot {F_q}}}$$
(also Cd)

$$capc = \frac{{{e_{emax}}^2}}{{{m_e} \cdot {\lambda _C}^2 \cdot {F_q}^2}}$$

Curl

Conductance Momentum

IMFU9
$$curl = \frac{{{e_{emax}}^2}}{{{m_e} \cdot {\lambda _C}}}$$  $$cmom = \frac{{{e_{emax}}^2}}{{{m_e} \cdot {\lambda _C} \cdot {F_q}}}$$  $$IMFU9 = \frac{{{e_{emax}}^2}}{{{m_e} \cdot {\lambda _C} \cdot {F_q}^2}}$$

Exposure

Conductance Density

IMFU12
$$expr = \frac{{{e_{emax}}^2}}{{{m_e}}}$$  $$cden = \frac{{{e_{emax}}^2}}{{{m_e} \cdot {F_q}}}$$  $$IMFU12 = \frac{{{e_{emax}}^2}}{{{m_e} \cdot {F_q}^2}}$$

### Opposing Magnetic Units

#### Obverse Units

Friction

Drag

Vorticular Opposition

$$fric = \frac{{{m_e} \cdot {\lambda _C}^3 \cdot {F_q}^2}}{{{e_{emax}}^4}}$$  $$drag = \frac{{{m_e} \cdot {\lambda _C}^3 \cdot {F_q}}}{{{e_{emax}}^4}}$$ $$vopp = \frac{{{m_e} \cdot {\lambda _C}^3}}{{{e_{emax}}^4}}$$

Rub

Resistance

Angular Opposition

$$rub = \frac{{{m_e} \cdot {\lambda _C}^2 \cdot {F_q}^2}}{{{e_{emax}}^4}}$$  $$resn = \frac{{{m_e} \cdot {\lambda _C}^2 \cdot {F_q}}}{{{e_{emax}}^4}}$$  $$aopp = \frac{{{m_e} \cdot {\lambda _C}^2}}{{{e_{emax}}^4}}$$

Plow

Skid

Linear Opposition

$$plow = \frac{{{m_e} \cdot {\lambda _C} \cdot {F_q}^2}}{{{e_{emax}}^4}}$$  $$skid = \frac{{{m_e} \cdot {\lambda _C} \cdot {F_q}}}{{{e_{emax}}^4}}$$  $$lopp = \frac{{{m_e} \cdot {\lambda _C}}}{{{e_{emax}}^4}}$$

Hold

Stop

Magnetic Opposition

$$hold = \frac{{{m_e} \cdot {F_q}^2}}{{{e_{emax}}^4}}$$  $$stop = \frac{{{m_e} \cdot {F_q}}}{{{e_{emax}}^4}}$$  $$mopp = \frac{{{m_e}}}{{{e_{emax}}^4}}$$

#### Inverse Units

IOMU1  IOMU2  IOMU3
$$IOMU1 = \frac{{4\pi \cdot {e_{emax}}^4}}{{{m_e} \cdot {\lambda _C}^3 \cdot {F_q}^2}}$$  $$IOMU2 = \frac{{{e_{emax}}^4}}{{{m_e} \cdot {\lambda _C}^3 \cdot {F_q}}}$$ $$IOMU3 = \frac{{{e_{emax}}^4}}{{{m_e} \cdot {\lambda _C}^3}}$$
$$IOMU4 = \frac{{4\pi \cdot {e_{emax}}^4}}{{{m_e} \cdot {\lambda _C}^2 \cdot {F_q}^2}}$$  $$admt = \frac{{{e_{emax}}^4}}{{{m_e} \cdot {\lambda _C}^2 \cdot {F_q}}}$$ $$rlct = \frac{{{e_{emax}}^4}}{{{m_e} \cdot {\lambda _C}^2}}$$
IOMU7  IOMU8  IOMU9
$$IOMU7 = \frac{{4\pi \cdot {e_{emax}}^4}}{{{m_e} \cdot {\lambda _C} \cdot {F_q}^2}}$$  $$IOMU8 = \frac{{{e_{emax}}^4}}{{{m_e} \cdot {\lambda _C} \cdot {F_q}}}$$ $$IOMU9 = \frac{{{e_{emax}}^4}}{{{m_e} \cdot {\lambda _C}}}$$
IOMU10  IOMU11  IOMU12
$$IOMU10 = \frac{{{e_{emax}}^4}}{{{m_e} \cdot {F_q}^2}}$$  $$IOMU11 = \frac{{{e_{emax}}^4}}{{{m_e} \cdot {F_q}}}$$  $$IOMU11 = \frac{{{e_{emax}}^4}}{{{m_e}}}$$

### Electric Units A

#### Obverse Units

OEUA1  OEUA2  OEUA3  OEUA4
$$OEUA1 = \frac{1}{{{e_{emax}}^2 \cdot {\lambda _C}^3 \cdot {F_q}^3}}$$  $$OEUA2 = \frac{1}{{{e_{emax}}^2 \cdot {\lambda _C}^3 \cdot {F_q}^2}}$$  $$OEUA3 = \frac{1}{{{e_{emax}}^2 \cdot {\lambda _C}^3 \cdot {F_q}}}$$  $$OEUA4 = \frac{1}{{{e_{emax}}^2 \cdot {\lambda _C}^3}}$$
OEUA5  OEUA6  OEUA7  OEUA8
$$OEUA5 = \frac{1}{{{e_{emax}}^2 \cdot {\lambda _C}^2 \cdot {F_q}^3}}$$  $$6OEUA = \frac{1}{{{e_{emax}}^2 \cdot {\lambda _C}^2 \cdot {F_q}^2}}$$  $$OEUA7 = \frac{1}{{{e_{emax}}^2 \cdot {\lambda _C}^2 \cdot {F_q}}}$$  $$OEUA8 = \frac{1}{{{e_{emax}}^2 \cdot {\lambda _C}^2}}$$
OEUA9  OEUA10  OEUA11  OEUA12
$$OEUA9 = \frac{1}{{{e_{emax}}^2 \cdot {\lambda _C} \cdot {F_q}^3}}$$  $$OEUA10 = \frac{1}{{{e_{emax}}^2 \cdot {\lambda _C} \cdot {F_q}^2}}$$  $$OEUA11 = \frac{1}{{{e_{emax}}^2 \cdot {\lambda _C} \cdot {F_q}}}$$  $$OEUA12 = \frac{1}{{{e_{emax}}^2 \cdot {\lambda _C}}}$$
OEUA  OEUA  OEUA  OEUA
$$OEUA13 = \frac{1}{{{e_{emax}}^2 \cdot {F_q}^3}}$$  $$OEUA14 = \frac{1}{{{e_{emax}}^2 \cdot {F_q}^2}}$$  $$OEUA15 = \frac{1}{{{e_{emax}}^2 \cdot {F_q}}}$$  $$OEUA16 = \frac{1}{{{e_{emax}}^2}}$$

#### Inverse Units

IEUA1

IEUA2  IEUA3  Charge Volume
$$IEUA1= {e_{emax}}^2 \cdot {\lambda _C}^3 \cdot {F_q}^3$$  $$IEUA2 = {e_{emax}}^2 \cdot {\lambda _C}^3 \cdot {F_q}^2$$  $$IEUA3 = {e_{emax}}^2 \cdot {\lambda _C}^3 \cdot {F_q}$$  $$chvm = {e_{emax}}^2 \cdot {\lambda _C}^3$$

Ball Lightning

Plasma

Magnetic Moment

Surface Charge

$$ball = {e_{emax}}^2 \cdot {\lambda _C}^2 \cdot {F_q}^3$$  $$plsm = {e_{emax}}^2 \cdot {\lambda _C}^2 \cdot {F_q}^2$$ $$magm = {e_{emax}}^2 \cdot {\lambda _C}^2 \cdot {F_q}$$   $$sfch = {e_{emax}}^2 \cdot {\lambda _C}^2$$
IEUA9

Charge Acceleration

Charge Velocity

Charge Length

(Charge Displacement)

$$IEUA9 = {e_{emax}}^2 \cdot {\lambda _C} \cdot {F_q}^3$$   $$chac = {e_{emax}}^2 \cdot {\lambda _C} \cdot {F_q}^2$$ $$chvl = {e_{emax}}^2 \cdot {\lambda _C} \cdot {F_q}$$  $$chgl = {e_{emax}}^2 \cdot {\lambda _C}$$

IEUA13

Charge Resonance
(Electric Coupling)

Current

Charge
$$IEUA13 = {e_{emax}}^2 \cdot {F_q}^3$$  $$chrs = {e_{emax}}^2 \cdot {F_q}^2$$
(also ecup)
$$curr = {e_{emax}}^2 \cdot {F_q}$$   $$chrg = {e_{emax}}^2$$

### Electric Units B

#### Obverse Units

OEUB1 OEUB2 OEUB3

Specific Charge

$$OEUB1 = \frac{{{\lambda _C}^3}}{{{e_{emax}}^2 \cdot {F_q}^3}}$$  $$OEUB2 = \frac{{{\lambda _C}^3}}{{{e_{emax}}^2 \cdot {F_q}^2}}$$  $$OEUB3 = \frac{{{\lambda _C}^3}}{{{e_{emax}}^2 \cdot {F_q}}}$$  $$spch = \frac{{{\lambda _C}^3}}{{{e_{emax}}^2}}$$
OEUB5 OEUB6 OEUB7

Charge Distribution

$$OEUB5 = \frac{{{\lambda _C}^2}}{{{e_{emax}}^2 \cdot {F_q}^3}}$$  $$OEUB6 = \frac{{{\lambda _C}^2}}{{{e_{emax}}^2 \cdot {F_q}^2}}$$  $$OEUB7 = \frac{{{\lambda _C}^2}}{{{e_{emax}}^2 \cdot {F_q}}}$$  $$chds = \frac{{{\lambda _C}^2}}{{{e_{emax}}^2}}$$
OEUB9 OEUB10 OEUB11

$$OEUB9 = \frac{{{\lambda _C}}}{{{e_{emax}}^2 \cdot {F_q}^3}}$$  $$OEUB10 = \frac{{{\lambda _C}}}{{{e_{emax}}^2 \cdot {F_q}^2}}$$  $$OEUB11 = \frac{{{\lambda _C}}}{{{e_{emax}}^2 \cdot {F_q}}}$$  $$chgr = \frac{{{\lambda _C}}}{{{e_{emax}}^2}}$$

#### Inverse Units

IEUB1

IEUB2 IEUB3  Charge Density
$$IEUB1 = \frac{{{e_{emax}}^2 \cdot {F_q}^3}}{{{\lambda _C}^3}}$$ $$IEUB2 = \frac{{{e_{emax}}^2 \cdot {F_q}^2}}{{{\lambda _C}^3}}$$ $$IEUB3 = \frac{{{e_{emax}}^2 \cdot {F_q}}}{{{\lambda _C}^3}}$$  $$chgd = \frac{{{e_{emax}}^2}}{{{\lambda _C}^3}}$$

IEUB5

IEUB6

Current Density  Electric Flux Density
$$IEUB5 = \frac{{{e_{emax}}^2 \cdot {F_q}^3}}{{{\lambda _C}^2}}$$  $$IEUB6 = \frac{{{e_{emax}}^2 \cdot {F_q}^2}}{{{\lambda _C}^2}}$$ $$cdns = \frac{{{e_{emax}}^2 \cdot {F_q}}}{{{\lambda _C}^2}}$$  $$efxd = \frac{{{e_{emax}}^2}}{{{\lambda _C}^2}}$$
IEUB9

IEUB10

Magnetic Field Intensity  IEUB12
$$IEUB9 = \frac{{{e_{emax}}^2 \cdot {F_q}^3}}{{{\lambda _C}}}$$  $$IEUB10 = \frac{{{e_{emax}}^2 \cdot {F_q}^2}}{{{\lambda _C}}}$$  $$mfdi = \frac{{{e_{emax}}^2 \cdot {F_q}}}{{{\lambda _C}}}$$ $$IEUB12 = \frac{{{e_{emax}}^2}}{{{\lambda _C}}}$$

### Electric Field Units

#### Obverse Units

OEFU1  Varying Electric Field

Electric Field

Specific Charge

$$OEFU1 = \frac{{{\lambda _C}^3 \cdot {F_q}^3}}{{{e_{emax}}^2}}$$  $$vefd = \frac{{{\lambda _C}^3 \cdot {F_q}^2}}{{{e_{emax}}^2}}$$  $$efld = \frac{{{\lambda _C}^3 \cdot {F_q}}}{{{e_{emax}}^2}}$$  $$spch = \frac{{{\lambda _C}^3}}{{{e_{emax}}^2}}$$
OEFU5  Charge Temperature  Charge Sweep  OEFU8
$$OEFU5 = \frac{{{\lambda _C}^2 \cdot {F_q}^3}}{{{e_{emax}}^2}}$$  $$chgt = \frac{{{\lambda _C}^2 \cdot {F_q}^2}}{{{e_{emax}}^2}}$$  $$chgs = \frac{{{\lambda _C}^2 \cdot {F_q}}}{{{e_{emax}}^2}}$$  $$OEFU8 = \frac{{{\lambda _C}^2}}{{{e_{emax}}^2}}$$
OEFU9  Charge Acceleration  Charge Velocity

$$OEFU9 = \frac{{{\lambda _C} \cdot {F_q}^3}}{{{e_{emax}}^2}}$$  $$chga = \frac{{{\lambda _C} \cdot {F_q}^2}}{{{e_{emax}}^2}}$$  $$chgv = \frac{{{\lambda _C} \cdot {F_q}}}{{{e_{emax}}^2}}$$  $$chgr = \frac{{{\lambda _C}}}{{{e_{emax}}^2}}$$
OEFU13  Charge Resonance  Charge Frequency  Charge
$$OEFU13 = \frac{{{F_q}^3}}{{{e_{emax}}^2}}$$  $$crsn = \frac{{{F_q}^2}}{{{e_{emax}}^2}}$$  $$chgf = \frac{{{F_q}}}{{{e_{emax}}^2}}$$  $$chrg = \frac{1}{{{e_{emax}}^2}}$$

#### Inverse Units

IEFU1

IEFU2 IEFU3 Charge Density
$$IEFU1 = \frac{{{e_{emax}}^2}}{{{\lambda _C}^3 \cdot {F_q}^3}}$$  $$IEFU2 = \frac{{{e_{emax}}^2}}{{{\lambda _C}^3 \cdot {F_q}^2}}$$ $$IEFU3 = \frac{{{e_{emax}}^2}}{{{\lambda _C}^3 \cdot {F_q}}}$$  $$chgd = \frac{{{e_{emax}}^2}}{{{\lambda _C}^3}}$$

IEFU5

IEFU6 IEFU7 Electric Flux Density
$$IEFU5 = \frac{{{e_{emax}}^2}}{{{\lambda _C}^2 \cdot {F_q}^3}}$$  $$IEFU6 = \frac{{{e_{emax}}^2}}{{{\lambda _C}^2 \cdot {F_q}^2}}$$  $$IEFU7 = \frac{{{e_{emax}}^2}}{{{\lambda _C}^2 \cdot {F_q}}}$$  $$efxd = \frac{{{e_{emax}}^2}}{{{\lambda _C}^2}}$$
IEFU9 IEFU10 IEFU11 IEFU12
$$IEFU9 = \frac{{{e_{emax}}^2}}{{{\lambda _C} \cdot {F_q}^3}}$$ $$IEFU10 = \frac{{{e_{emax}}^2}}{{{\lambda _C} \cdot {F_q}^2}}$$ $$IEFU11 = \frac{{{e_{emax}}^2}}{{{\lambda _C} \cdot {F_q}}}$$  $$IEFU12 = \frac{{{e_{emax}}^2}}{{{\lambda _C}}}$$

IEFU13

IEFU14 IEFU15 Charge
$$IEFU13 = \frac{{{e_{emax}}^2}}{{{F_q}^3}}$$  $$IEFU14 = \frac{{{e_{emax}}^2}}{{{F_q}^2}}$$ $$IEFU15 = \frac{{{e_{emax}}^2}}{{{F_q}}}$$   $$chrg = {e_{emax}}^2$$

### Inertial Units A

#### Obverse Units

Light

Photon

Rotation

Vortex

$$ligt = {m_e} \cdot {\lambda _C}^3 \cdot {F_q}^3$$  $$phtn = {m_e} \cdot {\lambda _C}^3 \cdot {F_q}^2$$  $$rota = {m_e} \cdot {\lambda _C}^3 \cdot {F_q}$$  $$vrtx = {m_e} \cdot {\lambda _C}^3$$

Power

Energy

Angular Momentum

Moment of Inertia

$$powr = {m_e} \cdot {\lambda _C}^2 \cdot {F_q}^3$$  $$enrg = {m_e} \cdot {\lambda _C}^2 \cdot {F_q}^2$$  $$angm = {m_e} \cdot {\lambda _C}^2 \cdot {F_q}$$
(also h)
$$minr = {m_e} \cdot {\lambda _C}^2$$

1. Shock Frequency
2. Light Intensity

Force

Momentum

Torque

$$lint = {m_e} \cdot {\lambda _C} \cdot {F_q}^3$$  $$forc = {m_e} \cdot {\lambda _C} \cdot {F_q}^2$$  $$momt = {m_e} \cdot {\lambda _C} \cdot {F_q}$$  $$torq = {m_e} \cdot {\lambda _C}$$

Surface Tension

Intensity

Mass

$$irrd = {m_e} \cdot {F_q}^3$$  $$sten = {m_e} \cdot {F_q}^2$$  $$ints = {m_e} \cdot {F_q}$$  $$mass = {m_e}$$

#### Inverse Units

IIUA1  IIUA2 IIUA3 IIUA4
$$IIUA1 = \frac{1}{{{m_e} \cdot {\lambda _C}^3 \cdot {F_q}^3}}$$  $$IIUA2 = \frac{1}{{{m_e} \cdot {\lambda _C}^3 \cdot {F_q}^2}}$$ $$IIUA3 = \frac{1}{{{m_e} \cdot {\lambda _C}^3 \cdot {F_q}}}$$ $$IIUA4 = \frac{1}{{{m_e} \cdot {\lambda _C}^3}}$$
IIUA5  IIUA6 IIUA7 IIUA8
$$IIUA5 = \frac{1}{{{m_e} \cdot {\lambda _C}^2 \cdot {F_q}^3}}$$ $$IIUA6 = \frac{1}{{{m_e} \cdot {\lambda _C}^2 \cdot {F_q}^2}}$$ $$IIUA7 = \frac{1}{{{m_e} \cdot {\lambda _C}^2 \cdot {F_q}}}$$  $$IIUA8 = \frac{1}{{{m_e} \cdot {\lambda _C}^2}}$$
IIUA9  IIUA10 IIUA11 IIUA12
$$IIUA9 = \frac{1}{{{m_e} \cdot {\lambda _C} \cdot {F_q}^3}}$$ $$IIUA10 = \frac{1}{{{m_e} \cdot {\lambda _C} \cdot {F_q}^2}}$$ $$IIUA11 = \frac{1}{{{m_e} \cdot {\lambda _C} \cdot {F_q}}}$$ $$IIUA12 = \frac{1}{{{m_e} \cdot {\lambda _C}}}$$
IIUA13 IIUA14 IIUA15 IIUA16
$$IIUA13 = \frac{1}{{{m_e} \cdot {F_q}^3}}$$ $$IIUA14 = \frac{1}{{{m_e} \cdot {F_q}^2}}$$ $$IIUA15 = \frac{1}{{{m_e} \cdot {F_q}}}$$  $$IIUA16 = \frac{1}{{{m_e}}}$$

### Inertial Units B

#### Obverse Units

OIUB1 OIUB2 OIUB3

Mass Density

$$OIUB1 = \frac{{{m_e} \cdot {F_q}^3}}{{{\lambda _C}^3}}$$  $$OIUB2 = \frac{{{m_e} \cdot {F_q}^2}}{{{\lambda _C}^3}}$$  $$OIUB3 = \frac{{{m_e} \cdot {F_q}}}{{{\lambda _C}^3}}$$  $$masd = \frac{{{m_e}}}{{{\lambda _C}^3}}$$
OIUB5

Force Density fdns

Angfular Momentum Density

Surface Density

$$OIUB5 = \frac{{{m_e} \cdot {F_q}^3}}{{{\lambda _C}^2}}$$  $$fdns = \frac{{{m_e} \cdot {F_q}^2}}{{{\lambda _C}^2}}$$  $$amdn = \frac{{{m_e} \cdot {F_q}}}{{{\lambda _C}^2}}$$  $$sfcd = \frac{{{m_e}}}{{{\lambda _C}^2}}$$
OIUB9

Pressure

Viscosity

1. Rebound
2. Length Density

$$OIUB9 = \frac{{{m_e} \cdot {F_q}^3}}{{{\lambda _C}}}$$ $$pres = \frac{{{m_e} \cdot {F_q}^2}}{{{\lambda _C}}}$$  $$visc = \frac{{{m_e} \cdot {F_q}}}{{{\lambda _C}}}$$  $$rbnd = \frac{{{m_e}}}{{{\lambda _C}}}$$
(also ldns)

#### Inverse Units

IIUB1

IIUB2 IIUB3  Specific Volume
$$IIUB1 = \frac{{{\lambda _C}^3}}{{{m_e} \cdot {F_q}^3}}$$ $$IIUB2 = \frac{{{\lambda _C}^3}}{{{m_e} \cdot {F_q}^2}}$$ $$IIUB3 = \frac{{{\lambda _C}^3}}{{{m_e} \cdot {F_q}}}$$  $$spcv = \frac{{{\lambda _C}^3}}{{{m_e}}}$$
IIUB5 IIUB6  IIUB7 IIUB8
$$IIUB5 = \frac{{{\lambda _C}^2}}{{{m_e} \cdot {F_q}^3}}$$ $$IIUB6 = \frac{{{\lambda _C}^2}}{{{m_e} \cdot {F_q}^2}}$$ $$IIUB7 = \frac{{{\lambda _C}^2}}{{{m_e} \cdot {F_q}}}$$  $$IIUB8 = \frac{{{\lambda _C}^2}}{{{m_e}}}$$
IIUB9 IIUB10 IIUB11 IIUB12
$$IIUB9 = \frac{{{\lambda _C}}}{{{m_e} \cdot {F_q}^3}}$$ $$IIUB10 = \frac{{{\lambda _C}}}{{{m_e} \cdot {F_q}^2}}$$ $$IIUB11 = \frac{{{\lambda _C}}}{{{m_e} \cdot {F_q}}}$$  $$IIUB12 = \frac{{{\lambda _C}}}{{{m_e}}}$$

### Inertial Units C

#### Obverse Units

OIUC1  OIUC2  OIUC3
$$OIUC1 = \frac{{{m_e}}}{{{\lambda _C}^3 \cdot {F_q}^3}}$$  $$OIUC2 = \frac{{{m_e}}}{{{\lambda _C}^3 \cdot {F_q}^2}}$$  $$OIUC3 = \frac{{{m_e}}}{{{\lambda _C}^3 \cdot {F_q}}}$$
OIUC4 OIUC5 OIUC6
$$OIUC4 = \frac{{{m_e}}}{{{\lambda _C}^2 \cdot {F_q}^3}}$$ $$OIUC5 = \frac{{{m_e}}}{{{\lambda _C}^2 \cdot {F_q}^2}}$$ $$OIUC6 = \frac{{{m_e}}}{{{\lambda _C}^2 \cdot {F_q}}}$$
OIUC7  OIUC8  OIUC9
$$OIUC7 = \frac{{{m_e}}}{{{\lambda _C} \cdot {F_q}^3}}$$ $$OIUC8 = \frac{{{m_e}}}{{{\lambda _C} \cdot {F_q}^2}}$$ $$OIUC9 = \frac{{{m_e}}}{{{\lambda _C} \cdot {F_q}}}$$

#### Inverse Units

IIUC1  IIUC2 IIUC3
$$IIUC1 = \frac{{{\lambda _C}^3 \cdot {F_q}^3}}{{{m_e}}}$$ $$IIUC2 = \frac{{{\lambda _C}^3 \cdot {F_q}^2}}{{{m_e}}}$$ $$IIUC3 = \frac{{{\lambda _C}^3 \cdot {F_q}}}{{{m_e}}}$$
IIUC4 IIUC5 IIUC6
$$IIUC4 = \frac{{{\lambda _C}^2 \cdot {F_q}^3}}{{{m_e}}}$$ $$IIUC5 = \frac{{{\lambda _C}^2 \cdot {F_q}^2}}{{{m_e}}}$$ $$IIUC6 = \frac{{{\lambda _C}^2 \cdot {F_q}}}{{{m_e}}}$$
IIUC7 IIUC8  IIUC9
$$IIUC7 = \frac{{{\lambda _C} \cdot {F_q}^3}}{{{m_e}}}$$ $$IIUC8 = \frac{{{\lambda _C} \cdot {F_q}^2}}{{{m_e}}}$$ $$IIUC9 = \frac{{{\lambda _C} \cdot {F_q}}}{{{m_e}}}$$

### Length/Frequency Units A

#### Obverse Units

Volume-Resonance

Flow

Volume

$$dtrd = {\lambda _C}^3 \cdot {F_q}^2$$  $$flow = {\lambda _C}^3 \cdot {F_q}$$ $$volm = {\lambda _C}^3$$

1. Temperature

1. Sweep
2. Angular Velocity

Area

$$temp = {\lambda _C}^2 \cdot {F_q}^2$$
(also rdtn)

$$swep = {\lambda _C}^2 \cdot {F_q}$$   $$area = {\lambda _C}^2$$

Acceleration

Velocity

Line

$$accl = {\lambda _C} \cdot {F_q}^2$$   $$velc = {\lambda _C} \cdot {F_q}$$  $$line = {\lambda _C}$$

Resonance

Frequency

$$rson = {F_q}^2$$  $$freq = {F_q}$$

#### Inverse Units

ILFUA1 ILFUA2 ILFUA3
$$ILFUA1 = \frac{1}{{{\lambda _C}^3 \cdot {F_q}^2}}$$ $$ILFUA2 = \frac{1}{{{\lambda _C}^3 \cdot {F_q}}}$$ $$ILFUA3 = \frac{1}{{{\lambda _C}^3}}$$
ILFUA4 ILFUA5 ILFUA6
$$ILFUA4 = \frac{1}{{{\lambda _C}^2 \cdot {F_q}^2}}$$ $$ILFUA5 = \frac{1}{{{\lambda _C}^2 \cdot {F_q}}}$$ $$ILFUA6 = \frac{1}{{{\lambda _C}^2}}$$

ILFUA7

ILFUA8 Wave Number
$$ILFUA7 = \frac{1}{{{\lambda _C} \cdot {F_q}^2}}$$ $$ILFUA8 = \frac{1}{{{\lambda _C} \cdot {F_q}}}$$ $$wavn = \frac{1}{{{\lambda _C}}}$$
Orbit

Time

$$orbt = \frac{1}{{{F_q}^2}}$$  $$time = \frac{1}{{{F_q}}}$$

### Length/Frequency Units B

#### Obverse Units

OLFUB1 OLFUB2

Volume-Time

$$OLFUB1 = \frac{{{\lambda _C}^3}}{{{F_q}^3}}$$ $$OLFUB1 = \frac{{{\lambda _C}^3}}{{{F_q}^2}}$$   $$vlmt = \frac{{{\lambda _C}^3}}{{{F_q}}}$$
OLFUB4 OLFUB5

Active Area

$$OLFUB4 = \frac{{{\lambda _C}^2}}{{{F_q}^3}}$$  $$OLFUB5 = \frac{{{\lambda _C}^2}}{{{F_q}^2}}$$ $$acta = \frac{{{\lambda _C}^2}}{{{F_q}}}$$
OLFUB7 OLFUB8

Dynamic Length

$$OLFUB7 = \frac{{{\lambda _C}}}{{{F_q}^3}}$$ $$OLFUB8 = \frac{{{\lambda _C}}}{{{F_q}^2}}$$  $$dynl = \frac{{{\lambda _C}}}{{{F_q}}}$$

#### Inverse Units

ILFUB1 ILFUB2 ILFUB3
$$ILFUB1 = \frac{{{F_q}^3}}{{{\lambda _C}^3}}$$ $$ILFUB2 = \frac{{{F_q}^2}}{{{\lambda _C}^3}}$$  $$ILFUB3 = \frac{{{F_q}}}{{{\lambda _C}^3}}$$
ILFUB4 ILFUB5 ILFUB6
$$ILFUB4 = \frac{{{F_q}^3}}{{{\lambda _C}^2}}$$ $$ILFUB5 = \frac{{{F_q}^2}}{{{\lambda _C}^2}}$$  $$ILFUB6 = \frac{{{F_q}}}{{{\lambda _C}^2}}$$

ILFUB7

ILFUB8 Scalar Wave
$$ILFUB7 = \frac{{{F_q}^3}}{{{\lambda _C}}}$$  $$ILFUB8 = \frac{{{F_q}^2}}{{{\lambda _C}}}$$  $$sclw = \frac{{{F_q}}}{{{\lambda _C}}}$$